

Report No.: SHEM190601386701 Page: 1 of 68

TEST REPORT

Application No.:	SHEM1906013867AT
Applicant:	Hangzhou Hikvision Digital Technology Co., Ltd
Address of Applicant: Manufacturer:	No.555 Qianmo Road, Binjiang District, Hangzhou 310052, China Hangzhou Hikvision Digital Technology Co., Ltd.
Address of Manufacturer:	No.555 Qianmo Road, Binjiang District, Hangzhou 310052, China
Factory:	1, Hangzhou Hikvision Technology Co., Ltd.
. dotory:	2, Hangzhou Hikvision Electronics Co., Ltd.
	3, Hangzhou Hikvision Digital Technology Co., Ltd.
	4, Chongging Hikvision technology Co., Ltd.
Address of Factory:	1, No.700, Dongliu Road, Binjiang District, Hangzhou City, Zhejiang, 310052, China
	2, No.299, Qiushi Road, Tonglu Economic Development Zone, Tonglu County,
	Hangzhou, Zhejiang, 310052, China.
	3, No. 555 Qianmo Road, Binjiang District, Hangzhou 310052, China
	4, No. 118, Haikang Road, Area C, Jianqiao Industrial Park, Dadukou District,
Equipment Under Test (EUT)	Chongqing, 401325,China
Equipment Under Test (EUT) EUT Name:	Digital Video Recorder
	0
Model No.:	iDS-7216HQHI-M1/S, iDS-7216HQHI-M1/S/UHK,
	iDS-7216HQHI-M1/S/CKV, iDS-7216HQHI-M1/S/UVS, iDS-7216HQHI-M1/S/KVO, iDS-7216HQHI-M1/S/HUN,
	iDS-7216HQHI-M1/S/A, iDS-7216HQHI-K1/4S¤
¤	Please refer to section 2 of this report which indicates which model was
-	actually tested and which were electrically identical.
Standard(s) :	EN 55032:2015, EN 50130-4:2011 +A1:2014
()	EN 61000-3-2:2014, EN 61000-3-3:2013
Date of Receipt:	2019-05-10
Date of Test:	2019-05-13 to 2019-05-20
Date of Issue:	2019-06-11
Test Result:	Pass*

* In the configuration tested, the EUT complied with the standards specified above.

The CE mark as shown below can be used, under the responsibility of the manufacturer, after completion of an EU Declaration of Conformity and compliance with all relevant EU Directives.

parlan 2han

Parlam Zhan E&E Section Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

In Electrical Approvals in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.egs.com/en/Terms-and-Conditions.asox and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.egs.com/en/Terms-and-Conditions/Terms-eDocument.asox. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unautorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only. Attention: To check the authenticity of feating inspection report & certificate, please contact us at telephone: (86-755)83071443, or email: CN.Doccheck@ses.com

NO.588 West Jir	ndu Road, Songjiang District, Shi	anghai, China 201612
中国・上海・	松江区金都西路588号	邮编: 201612

t(86-21)61915666 f(86-21)61915678 www.sgsgroup.com.cn t(86-21)61915666 f(86-21)61915678 e sgs.china@sgs.com

Report No.: SHEM190601386701 Page: 2 of 68

Revision Record			
Version	Description	Date	Remark
00	Original	2019-06-11	/

Authorized for issue by:		
	Evan Yan	
	Evan Yan / Project Engineer	
	Brace Tang	
	Bruce Tang / Reviewer	

Report No.: SHEM190601386701 Page: 3 of 68

2 Test Summary

Emission Part			1	
ltem	Standard	Method	Requirement	Result
Conducted Emissions at Mains Terminals (150kHz- 30MHz)	EN 55032:2015	EN 55032:2015	Class B	Pass
Asymmetric Mode Conducted Emissions (150kHz-30MHz)	EN 55032:2015	EN 55032:2015	Class B	Pass
Radiated Emissions (30MHz-1GHz)	EN 55032:2015	EN 55032:2015	Class B	Pass
Radiated Emissions (above 1GHz)	EN 55032:2015	EN 55032:2015	Class B	Pass
Harmonic Current Emission	EN 61000-3- 2:2014	EN 61000-3-2:2014	Class A	N/A*
Voltage Fluctuations and Flicker	EN 61000-3- 3:2013	EN 61000-3-3:2013	Clause 5 of EN 61000- 3-3	Pass
Immunity Part				
ltem	Standard	Method	Requirement	Result
Electrostatic Discharge	EN 50130-4:2011 +A1:2014	EN 61000-4-2:2009	6kV Contact Discharge 2,4,8kV Air Discharge	Pass
Electrical Fast Transients/Burst at Power Port	EN 50130-4:2011 +A1:2014	EN 61000-4-4:2012	2kV 5/50ns Tr/Td 100kHz Repetition Frequency	Pass
Electrical Fast Transients/Burst at Signal Port	EN 50130-4:2011 +A1:2014	EN 61000-4-4:2012	1kV 5/50ns Tr/Td 100kHz Repetition Frequency	Pass
Surge at Power Port	EN 50130-4:2011 +A1:2014	EN 61000-4-5:2014	1.2/50µs Tr/Td 0.5,1kV Line to Line 0.5,1,2kV Line to Ground	Pass
Surge at Signal Port	EN 50130-4:2011 +A1:2014	EN 61000-4-5:2014	1.2/50µs Tr/Td 0.5,1kV Line to Ground	Pass
Voltage Dips and Interruptions	EN 50130-4:2011 +A1:2014	EN 61000-4-11:2004	80 % UT for 250per 70 % UT for 25per 40 % UT for 10per 0 % UT for 250per UT is Supply Voltage	Pass
Mains Supply Voltage Variations-Conditioning	EN 50130-4:2011 +A1:2014	EN 50130- 4:2011+A1:2014	Unom+10% Unom-15%	Pass
Radiated Immunity(80MHz- 2.7GHz)	EN 50130-4:2011 +A1:2014	EN 61000-4-3:2006 +A1:2008+A2:2010	10V/m, 80%, 1kHz sinusoidal Amp. Mod.	Pass
	Jindu Road, Songjiang District, Shang • 松江区金都西路588号	hal,China 201612 邮编: 201612	1(86-21)61915666 1(86-21)61915678 www.agagrout 1(86-21)61915666 1(86-21)61915678 e sgs.china@	

Member of the SGS Group (SGS SA)

Report No.: SHEM190601386701 Page: 4 of 68

Conducted Immunity at Power Port (150kHz- 100MHz)	EN 50130-4:2011 +A1:2014	EN 61000-4-6:2014	10Vrms (emf),80%,1kHz sinusoidal Amp. Mod.	Pass
Conducted Immunity at Signal Port (150kHz- 100MHz)	EN 50130-4:2011 +A1:2014	EN 61000-4-6:2014	10Vrms (emf),80%,1kHz sinusoidal Amp. Mod.	Pass

N/A*: Not applicable.Please refer to section 6.5 of this report for more details.

InternalSource	UpperFrequency
Below 108MHz	1GHz
108MHz to 500MHz	2GHz
500MHz to 1GHz	5GHz
Above 1GHz	5 times the highest frequency or 6 GHz, whichever is less

Note1: Declaration of EUT Family Grouping:

There are series models mentioned in this report and they are the similar in electrical and electronic characters. Only the model iDS-7216HQHI-M1/S was tested since their differences are model number.

Report No.: SHEM190601386701 Page: 5 of 68

3 Contents

		Pa	ge		
1	cov	ER PAGE	1		
2	TES	۲ SUMMARY	3		
_			_		
3	CON	TENTS	5		
4	GEN	ERAL INFORMATION	7		
-					
	4.1	DETAILS OF E.U.T DESCRIPTION OF SUPPORT UNITS			
	4.2				
	4.3				
	4.4				
	4.5				
	4.6	DEVIATION FROM STANDARDS.			
	4.7	ABNORMALITIES FROM STANDARD CONDITIONS			
	4.8	MONITORING OF EUT FOR ALL IMMUNITY TEST.	9		
5	EQU	IPMENT LIST	10		
6	EMIS	SSION TEST RESULTS	12		
	6.1	CONDUCTED EMISSIONS AT MAINS TERMINALS (150KHz-30MHz)	12		
	6.2	ASYMMETRIC MODE CONDUCTED EMISSIONS (150KHz-30MHz)	17		
	6.3	RADIATED EMISSIONS (30MHz-1GHz)	24		
	6.4	RADIATED EMISSIONS (ABOVE 1GHZ)	27		
	6.5	HARMONIC CURRENT EMISSION	30		
	6.6	VOLTAGE FLUCTUATIONS AND FLICKER	31		
7	IMM	UNITY TEST RESULTS	33		
		PERFORMANCE CRITERIA DESCRIPTION IN EN 50130-4:2011 +A1:2014			
	7.1 7.2	ELECTROSTATIC DISCHARGE			
	7.2	ELECTRICAL FAST TRANSIENTS/BURST AT POWER PORT			
	7.4	ELECTRICAL FAST TRANSIENTS/BURST AT FOWER FORT			
	7.5	SURGE AT POWER PORT			
	7.6	SURGE AT FOWER FORT			
	7.7	VOLTAGE DIPS AND INTERRUPTIONS.			
	7.8	MAINS SUPPLY VOLTAGE VARIATIONS-CONDITIONING			
	7.9	RADIATED IMMUNITY (80MHz-2.7GHz)			
	7.10	CONDUCTED IMMUNITY AT POWER PORT (150KHz-100MHz)			
	7.10	CONDUCTED IMMUNITY AT SIGNAL PORT (150KHZ-100MHZ)			
•					
8	РНО	TOGRAPHS	48		
	8.1	CONDUCTED EMISSIONS AT MAINS TERMINALS (150KHz-30MHz) TEST SETUP	48		
	8.2	ASYMMETRIC MODE CONDUCTED EMISSIONS (150KHz-30MHz) TEST SETUP	49		
	8.3	RADIATED EMISSIONS (30MHz-1GHz) TEST SETUP	50		
	8.4	RADIATED EMISSIONS (ABOVE 1GHZ) TEST SETUP			
	8.5	VOLTAGE FLUCTUATIONS AND FLICKER TEST SETUP	51		
	8.6	ELECTROSTATIC DISCHARGE TEST SETUP	51		
	8.7	RADIATED IMMUNITY (80MHz-2.7GHz) TEST SETUP			
	8.8	ELECTRICAL FAST TRANSIENTS/BURST AT POWER PORT TEST SETUP	53		
	8.9	ELECTRICAL FAST TRANSIENTS/BURST AT SIGNAL PORT TEST SETUP	53		
	8.10	SURGE AT POWER PORT TEST SETUP	54		
		NO.588 West Jindu Road, Songliang District, Shanghai, China 201612 1/86-21/61915686 1(86-21/61915678 www.sgsgroup.com.on 中国・上海・松江区全都西路588号 師编: 201612 1/86-21/61915686 1(86-21/61915678 e sgs.china@sgs.com			

Member of the SGS Group (SGS SA)

Report No.: SHEM190601386701 Page: 6 of 68

8.11	SURGE AT SIGNAL PORT TEST SETUP	55
8.12	CONDUCTED IMMUNITY AT POWER PORT (150KHz-100MHz) TEST SETUP	57
8.13	CONDUCTED IMMUNITY AT SIGNAL PORT (150KHz-100MHz) TEST SETUP	57
8.14	VOLTAGE DIPS AND INTERRUPTIONS TEST SETUP	58
8.15	MAINS SUPPLY VOLTAGE VARIATIONS-CONDITIONING TEST SETUP	58
8.16	EUT CONSTRUCTIONAL DETAILS (EUT PHOTOS)	59

NO.588 West Jindu Road, Songjiang District, Shanghal, China 201612 中国・上海・松江区全都西路588号 部場: 201612

Report No.: SHEM190601386701 Page: 7 of 68

4 General Information

4.1 Details of E.U.T.

Power supply:	AC 220V	
	Adapter:	
	101700700, MSA-C2000IC12.0-24P-DE, 12V2A, Φ2.1	
	101700702, MSA-C2000IC12.0-24P-GB, 12V2A, Ф2.1	
	101700704, MSA-C2000IC12.0-24P-AU, 12V2A, Φ2.1	
	101700729, MSA-C2000IC12.0-24P-BR, 12V2A, Φ2.1	
	101700708, ADS-26FSG-12 12024EPG, 12V2A, Ф2.1	
	101700710, ADS-26FSG-12 12024EPB, 12V2A, Ф2.1	
	ADS-26FSG-12 12024EPSA	
	ADS-26FSG-12 12024EPBR	
	101701110, ADS-26FSG-12 12024EPK, 12V2A,Ф2.1	
	101701062, ADS-26FSG-12 12024EPA, 12V2A	
Cables:	Interface: Power*1, Video in*16, Lan*1, Audio in*16, Audio out*1, Alarm in*8, Alarm out*1, HDMI*1, VGA*1, USB2.0*2, RS485*1	
	Cable length:LAN cable (unshielded) 2m, BNC cable 3m , Power cable 1.5m	

4.2 Description of Support Units

Description	Manufacturer	Model No.
Monitor	SAMSUNG	SMT-2233/CH
Notebook	Lenovo	L480
Notebook	HP	HP ProBook 440 G5
Digital Camera	Hikvision	DS-2CE16D3T-I3F
Digital Camera	Hikvision	DS-2CE56D1T-I
HDMI Cable	/	2m
VGA Cable	/	2m
BNC Cable	/	3m

Report No.: SHEM190601386701 Page: 8 of 68

4.3 Measurement Uncertainty

No.	ltem	Measurement Uncertainty	
	Conducted Emission	±2.6dB (9kHz to 150kHz)	
1	at mains port using AMN	±2.3dB (150kHz to 30MHz)	
2	Conducted Emission	1.0 dD (0/1/2 to 20/1/2)	
2	at mains port using VP	±1.9 dB (9kHz to 30MHz)	
3	Conducted Emission	±4.1 dB (150kHz to 30MHz)	
	at telecommunication port using AAN		
4	Radiated Power	±3.0dB	
		±4.4dB (30MHz-1GHz)	
5	Radiated emission	±4.8dB (1GHz-6GHz)	
		±5.2dB (6GHz-18GHz)	

Note: The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No.: SHEM190601386701 Page: 9 of 68

4.4 Test Location

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. E&E Lab 588 West Jindu Road, Xinqiao, Songjiang, 201612 Shanghai, China Tel: +86 21 6191 5666 Fax: +86 21 6191 5678 sub-contracted Hangzhou Hikvision Digital Technology Co., Ltd No.555 Qianmo Road, Binjiang District, Hangzhou 310052, China

4.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L0599)

CNAS has accredited SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• NVLAP (Certificate No. 201034-0)

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. is accredited by the National Voluntary Laboratory Accreditation Program(NVLAP). Certificate No. 201034-0.

• FCC – Designation Number: CN5033

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. has been recognized as an accredited testing laboratory.

Designation Number: CN5033. Test Firm Registration Number: 479755.

• Innovation, Science and Economic Development Canada

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. EMC Laboratory has been recognized by ISED as an accredited testing laboratory.

IC Registration No.: 8617A-1. CAB Identifier: CN0020.

• VCCI (Member No.: 3061)

The 3m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-13868, C-14336, T-12221, G-10830 respectively.

4.6 Deviation from Standards

None

4.7 Abnormalities from Standard Conditions None

4.8 Monitoring of EUT for All Immunity Test

Visual: work status and video quality

Report No.: SHEM190601386701 Page: 10 of 68

5 Equipment List

Conducted Emission	s at Mains Termir	nals				
Equipment	Manufacturer	Model NO	Serial NO.	Cal Date	Cal Due Date	
EMI test Receiver	R&S	ESR3	101831	2019/5/5	2020/5/4	
Line impedance stabilization network	R&S	ENV216	10107	2019/5/5	2020/5/4	
Radiated Emission		·	·			
Equipment	Manufacturer	Model NO	Serial NO.	Cal Date	Cal Due Date	
EMI test Receiver	R&S	ESU26	100499	2018/12/11	2019/12/11	
PRE-Amplifier	Connphy	CLN-1G18G-4030-S	517002	2018/8/30	2019/8/30	
TRLIOG Broad Band Antenna	Schwarzbeck	VULB 9168	796	2017/7/10	2019/7/10	
Horn antenna	Schwarzbeck	BBHA 9120D	7794	2017/8/19	2019/8/19	
Voltage Fluctuations	s and Flicker		·		-	
Equipment	Manufacturer	Model NO	Serial NO.	Cal Date	Cal Due Date	
Harmonic &Flicker analyzer	TESEQ	NSG1007	1438A04118-1	2019/5/22	2020/5/21	
AC power source	TESEQ	CCN1000-1	1438A04118-1	2019/5/22	2020/5/21	
Electrostatic Dischar	ge					
Equipment	Equipment Manufacturer		Serial NO.	Cal Date	Cal Due Date	
Electrostatic Discharge Simulator	TESEQ	NSG 437	1254	2018/7/4	2019/7/3	
EFT						
Equipment	Manufacturer	Model NO	Serial NO.	Cal Date	Cal Due Date	
Immunity Test system	n TESEQ	NSG3040	2173	2019/5/5	2020/5/4	
Capacitive couplir clamp	ng TESEQ	CDN 3425	1928	2019/5/5	2020/5/4	
Surge						
Immunity Test system TESEQ		NSG3060	1716	2019/5/5	2020/5/4	
Data coupling network TESEQ		CDN 117M	38777	2019/5/5	2020/5/4	
Power coupling network TESEQ		CDN 3061-S16	1513	2019/5/5	2020/5/4	
Immunity Test system 3C test		SG-728G	EC0630906	2018/11/09	2019/11/08	
Immunity Test system 3C test		SG-5006G	EC5580932	2018/11/09	2019/11/08	
Data coupling network 3C test		SGN-C3	EC5620903	2018/11/09	2019/11/08	
Power coupling netwo	rk 3C test	SGN-5010G	EC5590919	2018/11/09	2019/11/08	
Data coupling network	3C test	SGN-C2	EC5620903	2018/11/09	2019/11/08	
CS						

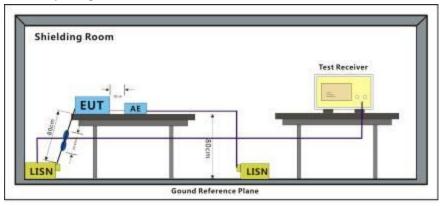
1(86-21) 61915666 1(86-21) 61915678 www.sgsgroup.com.cn 1(86-21) 61915666 1(86-21) 61915678 e sgs.china@sgs.com

Report No.: SHEM190601386701 Page: 11 of 68

Immunity Test system	TESEQ	NSG 4070C-0	47944	2019/4/2	2020/4/1
CDN	TESEQ	CDN M016	50365	2019/4/2	2020/4/1
Coupling clamp	TESEQ	KEMZ 801A	50113	2019/4/2	2020/4/1
RS					
Signal generator	keysight	N5181A	MY50146343	2018/11/09	2019/11/08
Power meter	keysight	N1914A	MY55336002	2018/11/09	2019/11/08
Amplifier	milmege	80RF1000-500	1069892	2018/11/09	2019/11/08
Amplifier	milmege	AS0827-230	1069893	2018/11/09	2019/11/08
Antenna	Schwarzbeck	STLP9128E	9128E7#3009	1	/
Antenna	Schwarzbeck	STLP 9149	9149-349	/	/
DIP & Mains Supply Vo	oltage Variation	s -conditioning			
Immunity Test system	TESEQ	NSG3040	2173	2019/5/5	2020/5/4
	TESEQ	VAR 3005-D16	2018	2019/5/5	2020/5/4
Other					
Equipment	Manufacturer	Model NO	Serial NO. Cal Date		Cal Due Date
Temperature&humidity recorder	PINYI	HTC-1	/ 2018		2019/7/18
Pressure meter	YIOU	BY-2003P	E01406062 2018/11/2		2019/11/26

Report No.: SHEM190601386701 Page: 12 of 68

6 Emission Test Results

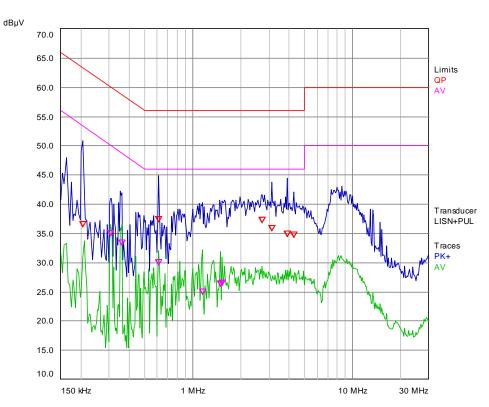

6.1 Conducted Emissions at Mains Terminals (150kHz-30MHz)

Test Requirement:	EN 55032:2015
Test Method:	EN 55032:2015
Frequency Range:	150kHz to 30MHz
Limit:	
0.15M-0.5MHz	66dB(μ V)-56dB(μ V) quasi-peak, 56dB(μ V)-46dB(μ V) average
0.5M-5MHz	56dB(μV) quasi-peak, 46dB(μV) average
5M-30MHz	60dB(μV) quasi-peak, 50dB(μV) average
Detector:	Peak for pre-scan (9kHz resolution bandwidth) 0.15M to 30MHz

6.1.1 E.U.T. Operation

Operating Environ	ment:				
Temperature:	26 °C	Humidity:	58 % RH	Atmospheric Pressure:	1022.2 mbar
Test mode:		a:Typical configuration: Keep EUT monitoring and data running continual, recording video during the test. Powered by power ADS-26FSG-12 12024EPG.			
		•	•	ng and data running continu A-C2000IC12.0-24P-DE	al, recording

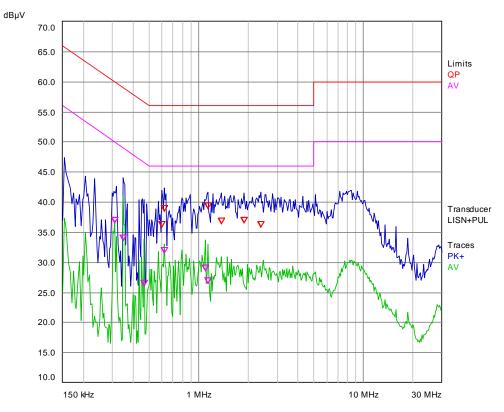
6.1.2 Test Setup Diagram


6.1.3 Measurement Data

An initial pre-scan was performed with peak detector.Quasi-Peak or Average measurement were performed at the frequencies with maximized peak emission were detected.

Notes : Emission Level=Read Level + LISN Factor + Cable Loss

Report No.: SHEM190601386701 Page: 13 of 68

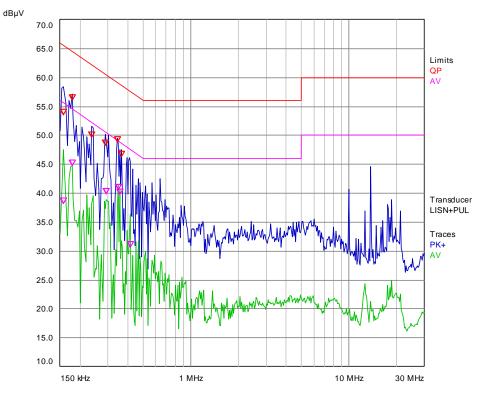


Mode:a; Line:Live Line

Trace	Frequency	Level	Limit	Delta Limit	Comment
	(MHz)	(dBµV)	(dBµV)	(dB)	
1 QP	0.206	36.05	63.37	-27.32	L1 / on
2 CA	0.306	34.54	50.08	-15.54	L1 / on
2 CA	0.362	32.95	48.68	-15.73	L1 / on
1 QP	0.61	36.95	56.00	-19.05	L1 / on
2 CA	0.614	29.48	46.00	-16.52	L1 / on
2 CA	1.15	24.45	46.00	-21.55	L1 / on
2 CA	1.494	25.89	46.00	-20.11	L1 / on
2 CA	1.53	26.08	46.00	-19.92	L1 / on
1 QP	2.698	36.72	56.00	-19.28	L1 / on
1 QP	3.138	35.40	56.00	-20.60	L1 / on
1 QP	3.91	34.45	56.00	-21.55	L1 / on
1 QP	4.274	34.21	56.00	-21.79	L1 / on

Report No.: SHEM190601386701 Page: 14 of 68

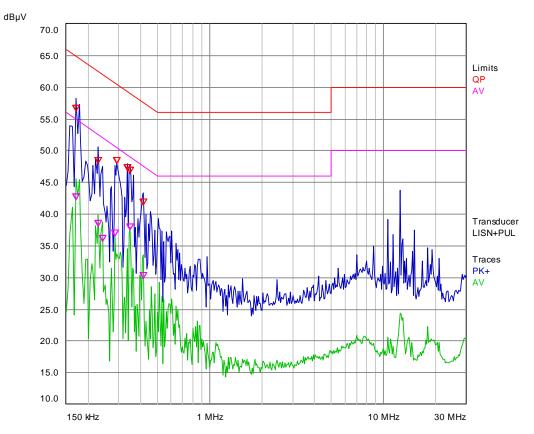
Mode:a; Line:Neutral Line


Final Measurement Result	S
---------------------------------	---

Trace	Frequency	Level	Limit	Delta Limit	Comment
	(MHz)	(dBµV)	(dBµV)	(dB)	
2 CA	0.31	36.50	49.97	-13.47	N / on
2 CA	0.35	33.51	48.96	-15.45	N / on
2 CA	0.47	26.00	46.51	-20.51	N / on
1 QP	0.598	35.82	56.00	-20.18	N / on
2 CA	0.618	31.50	46.00	-14.50	N / on
1 QP	0.622	38.48	56.00	-17.52	N / on
2 CA	1.102	28.49	46.00	-17.51	N / on
2 CA	1.134	26.51	46.00	-19.49	N / on
1 QP	1.146	38.86	56.00	-17.14	N / on
1 QP	1.382	36.30	56.00	-19.70	N / on
1 QP	1.882	36.49	56.00	-19.51	N / on
1 QP	2.374	35.82	56.00	-20.18	N / on

 Report No.:
 SHEM190601386701

 Page:
 15 of 68


Mode:b; Line:Live Line

Trace	Frequency	Level	Limit	Delta Limit	Comment
	(MHz)	(dBµV)	(dBµV)	(dB)	
1 QP	0.158	53.53	65.57	-12.04	L1 / on
2 CA	0.158	38.14	55.57	-17.43	L1 / on
1 QP	0.178	56.11	64.58	-8.47	L1 / on
2 CA	0.178	44.75	54.58	-9.83	L1 / on
1 QP	0.238	49.59	62.17	-12.58	L1 / on
1 QP	0.29	48.18	60.52	-12.34	L1 / on
2 CA	0.294	39.80	50.41	-10.61	L1 / on
1 QP	0.346	48.83	59.06	-10.23	L1 / on
2 CA	0.35	40.53	48.96	-8.43	L1 / on
2 CA	0.358	39.75	48.77	-9.02	L1 / on
1 QP	0.366	46.22	58.59	-12.37	L1 / on
2 CA	0.418	30.67	47.49	-16.82	L1 / on

 Report No.:
 SHEM190601386701

 Page:
 16 of 68

Mode:b; Line:Neutral Line

Final Measurement Results

Trace	Frequency	Level	Limit	Delta Limit	Comment
	(MHz)	(dBµV)	(dBµV)	(dB)	
1 QP	0.17	56.19	64.96	-8.77	N / on
2 CA	0.17	42.24	54.96	-12.72	N / on
1 QP	0.23	48.01	62.45	-14.44	N / on
2 CA	0.23	38.03	52.45	-14.42	N / on
2 CA	0.242	35.66	52.03	-16.37	N / on
2 CA	0.286	36.49	50.64	-14.15	N / on
1 QP	0.294	47.96	60.41	-12.45	N / on
1 QP	0.338	46.80	59.25	-12.45	N / on
1 QP	0.35	46.42	58.96	-12.54	N / on
2 CA	0.35	37.51	48.96	-11.45	N / on
1 QP	0.418	41.37	57.49	-16.12	N / on
2 CA	0.418	29.88	47.49	-17.61	N / on

Report No.: SHEM190601386701 Page: 17 of 68

6.2 Asymmetric Mode Conducted Emissions (150kHz-30MHz)


-	
Test Requirement:	EN 55032:2015
Test Method:	EN 55032:2015
Frequency Range:	150kHz to 30MHz
Limit:	
0.15M-0.5MHz(Voltage)	84-74(dBμV) quasi-peak; 74-64(dBμV) average
0.5M-30MHz(Voltage)	74(dBμV) quasi-peak; 64(dBμV) average
0.15M-0.5MHz(Current)	40-30(dBμV) quasi-peak; 30-20(dBμV) average
0.5M-30MHz(Current)	30(dBμV) quasi-peak; 20(dBμV) average
Detector:	9kHz resolution bandwidth 0.15M to 30MHz
Remark:	The voltage measured shall be corrected at each frequency of interest as follows:
	if the current margin with respect to the current limit is \leqslant 6 dB, the actual current margin shall be subtracted from the measured voltage;
	if the current margin with respect to the current limit is > 6 dB, 6 dB shall be subtracted from the measured voltage.

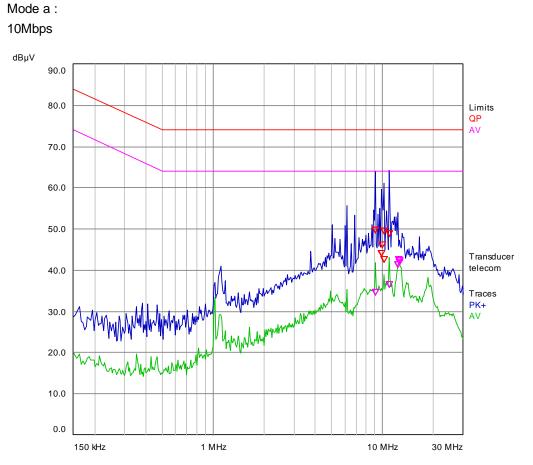
6.2.1 E.U.T. Operation

Operating Environment:

Temperature:	26 °C	Humidity:	58	% RH	Atmospheric Pressure:	1022.2	mbar
Test mode		0			ng and data running contin S-26FSG-12 12024EPG.	ual, reco	rding
		•			ng and data running contil SA-C2000IC12.0-24P-DE	nual, reco	ording

6.2.2 Test Setup Diagram

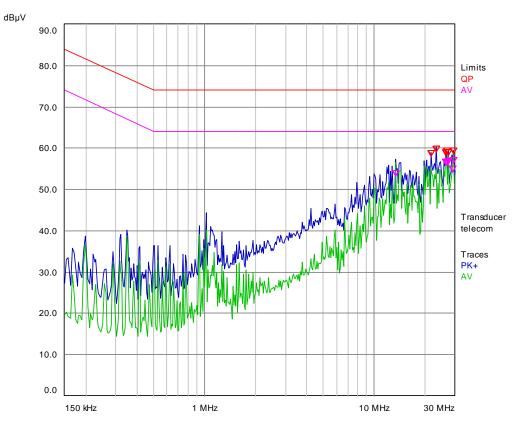
6.2.3 Measurement Data


Notes : Emission Level=Read Level + LISN Factor + Cable Loss

NO.588 West Jindu Road, Songjiang District, Shanghai, China	a 201612
中国・上海・松江区金都西路588号 部编	: 201612

1(86-21)61915666 1(86-21)61915678 www.agsgroup.com.cn 1(86-21)61915666 1(86-21)61915678 e.sgs.china@sgs.com

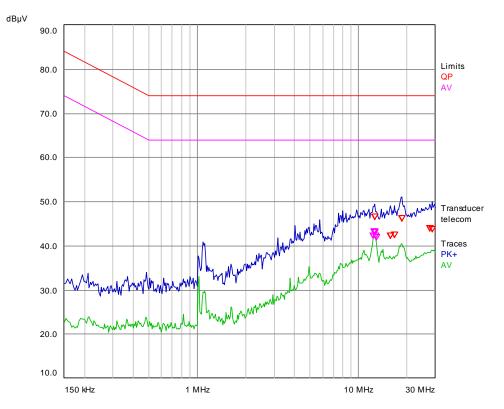
Report No.: SHEM190601386701 Page: 18 of 68



Final Measurement Results

Trace	Frequency	Level	Limit	Delta Limit
	(MHz)	(dBµV)	(dBµV)	(dB)
1 QP	9.078	49.07	74.00	-24.93
2 CA	9.078	33.92	64.00	-30.08
1 QP	9.826	43.41	74.00	-30.59
1 QP	9.946	45.52	74.00	-28.48
1 QP	10.166	48.77	74.00	-25.23
1 QP	10.19	41.80	74.00	-32.20
1 QP	10.926	48.11	74.00	-25.89
2 CA	10.926	35.77	64.00	-28.23
2 CA	12.35	40.59	64.00	-23.41
2 CA	12.454	41.86	64.00	-22.14
2 CA	12.554	41.18	64.00	-22.82
2 CA	12.658	41.74	64.00	-22.26

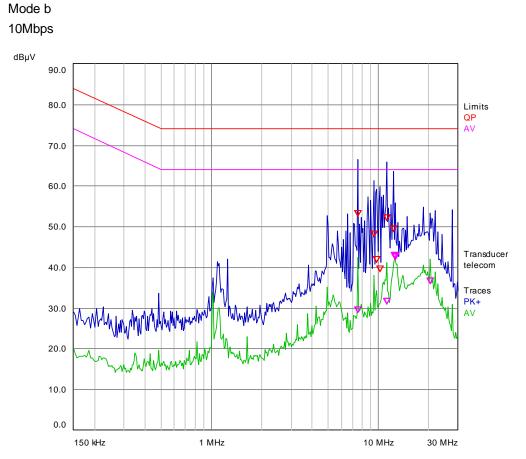
Report No.: SHEM190601386701 Page: 19 of 68


100Mbps

Trace	Frequency	Level	Limit	Delta Limit
	(MHz)	(dBµV)	(dBµV)	(dB)
2 CA	13.418	53.22	64.00	-10.78
1 QP	21.662	57.91	74.00	-16.09
1 QP	23.126	58.98	74.00	-15.02
1 QP	26.486	58.11	74.00	-15.89
2 CA	26.486	55.91	64.00	-8.09
1 QP	26.61	58.70	74.00	-15.30
2 CA	26.61	55.98	64.00	-8.02
1 QP	27.158	58.11	74.00	-15.89
2 CA	27.158	56.11	64.00	-7.89
2 CA	29.114	54.29	64.00	-9.71
1 QP	29.234	58.53	74.00	-15.47
2 CA	29.234	56.35	64.00	-7.65

 Report No.:
 SHEM190601386701

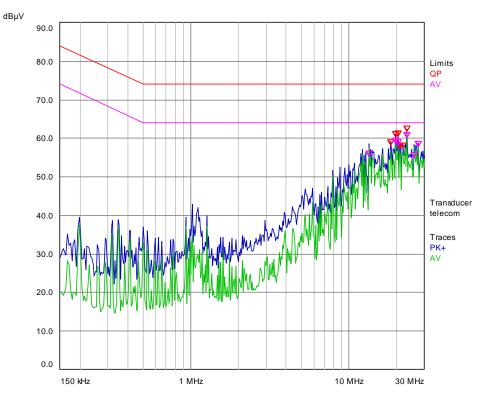
 Page:
 20 of 68


1000Mbps

Trace	Frequency	Level	Limit	Delta Limit
	(MHz)	(dBµV)	(dBµV)	(dB)
2 CA	12.35	41.71	64.00	-22.29
2 CA	12.454	42.52	64.00	-21.48
2 CA	12.554	42.50	64.00	-21.50
1 QP	12.658	45.92	74.00	-28.08
2 CA	12.658	42.41	64.00	-21.59
2 CA	12.758	41.64	64.00	-22.36
2 CA	12.862	41.32	64.00	-22.68
1 QP	15.782	41.71	74.00	-32.29
1 QP	16.746	41.82	74.00	-32.18
1 QP	18.562	45.51	74.00	-28.49
1 QP	27.626	43.23	74.00	-30.77
1 QP	28.754	43.20	74.00	-30.80

 Report No.:
 SHEM190601386701

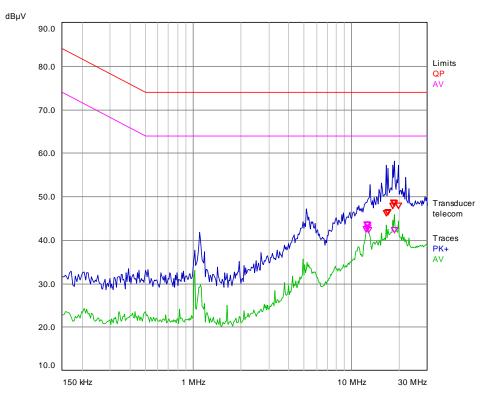
 Page:
 21 of 68


Final Measurement Results

Trace	Frequency	Level	Limit	Delta Limit
	(MHz)	(dBµV)	(dBµV)	(dB)
1 QP	7.494	52.55	74.00	-21.45
2 CA	7.494	28.80	64.00	-35.20
1 QP	9.35	47.55	74.00	-26.45
1 QP	9.722	41.21	74.00	-32.79
1 QP	10.154	38.89	74.00	-35.11
1 QP	11.194	51.49	74.00	-22.51
2 CA	11.194	30.98	64.00	-33.02
1 QP	12.338	48.85	74.00	-25.15
2 CA	12.454	42.19	64.00	-21.81
2 CA	12.558	41.76	64.00	-22.24
2 CA	12.658	42.06	64.00	-21.94
2 CA	20.382	35.99	64.00	-28.01

 Report No.:
 SHEM190601386701

 Page:
 22 of 68


100Mbps

Trace	Frequency	Level	Limit	Delta Limit
	(MHz)	(dBµV)	(dBµV)	(dB)
2 CA	13.358	55.33	64.00	-8.67
1 QP	18.242	58.12	74.00	-15.88
1 QP	19.71	60.25	74.00	-13.75
2 CA	19.71	58.68	64.00	-5.32
1 QP	20.258	60.47	74.00	-13.53
2 CA	20.258	58.22	64.00	-5.78
1 QP	20.806	57.35	74.00	-16.65
1 QP	21.906	57.40	74.00	-16.60
1 QP	23.13	61.78	74.00	-12.22
2 CA	23.13	59.97	64.00	-4.03
2 CA	25.694	54.86	64.00	-9.14
2 CA	27.158	57.76	64.00	-6.24

 Report No.:
 SHEM190601386701

 Page:
 23 of 68

1000Mbps

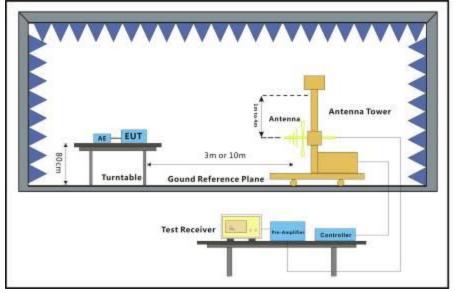
Final	Measurement Results
-------	---------------------

Trace	Frequency	Level	Limit	Delta Limit
	(MHz)	(dBµV)	(dBµV)	(dB)
2 CA	12.35	41.78	64.00	-22.22
2 CA	12.454	42.96	64.00	-21.04
2 CA	12.554	42.12	64.00	-21.88
2 CA	12.658	42.80	64.00	-21.20
2 CA	12.762	41.56	64.00	-22.44
1 QP	16.418	45.61	74.00	-28.39
1 QP	16.842	45.79	74.00	-28.21
1 QP	18.166	47.18	74.00	-26.82
1 QP	18.43	47.91	74.00	-26.09
1 QP	18.614	47.70	74.00	-26.30
2 CA	18.614	41.64	64.00	-22.36
1 QP	19.698	47.12	74.00	-26.88

Report No.: SHEM190601386701 Page: 24 of 68

6.3 Radiated Emissions (30MHz-1GHz)

Test Requirement:	EN 55032:2015
Test Method:	EN 55032:2015
Frequency Range:	30MHz to 1GHz
Limit:	
30MHz-230MHz	40 dB(μV/m) quasi-peak
230MHz-1GHz	47 dB(μV/m) quasi-peak
Detector:	Peak for pre-scan (120kHz resolution bandwidth) 30M to 1000MHz


6.3.1 E.U.T. Operation

Operating Environment:

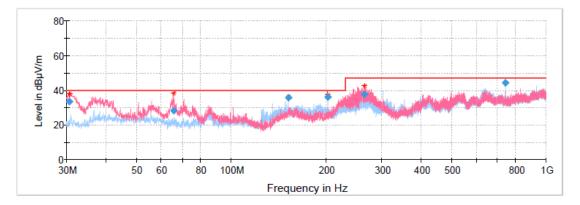
Temperature:23 °CHumidity:57 % RHAtmospheric Pressure:1022 mbarTest mode:a:Typical configuration: Keep EUT monitoring and data running continual, recording
video during the test. Powered by power ADS-26FSG-12 12024EPG.

b: Typical configuration: Keep EUT monitoring and data running continual, recording video during the test. Powered by power MSA-C2000IC12.0-24P-DE

6.3.2 Test Setup Diagram

6.3.3 Measurement Data

An initial pre-scan was performed in the chamber using the spectrum analyser in peak detection mode. Quasi-peak measurements were conducted based on the peak sweep graph. The EUT was measured by BiConiLog antenna with 2 orthogonal polarities.

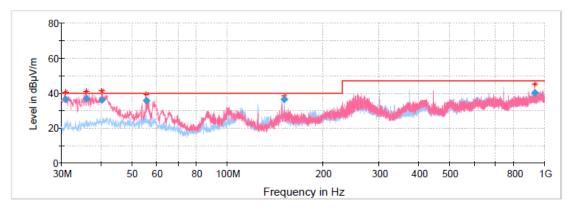

Notes : Emission Level=Read Level + Antenna Factor + Cable Loss - Preamp Factor

 Report No.:
 SHEM190601386701

 Page:
 25 of 68

Mode:a,

Final Result


Frequency	QuasiPeak	Limit	Margin	Meas.	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	Time	(kHz)	(cm)		(deg)	(dB)
				(ms)					
30.618500	33.56	40.00	6.44	1000.0	120.000	100.0	V	70.0	11.0
65.645000	28.29	40.00	11.71	1000.0	120.000	107.0	V	138.0	10.8
151.769000	35.86	40.00	4.14	1000.0	120.000	184.0	Н	167.0	8.8
202.483000	36.16	40.00	3.84	1000.0	120.000	125.0	Н	124.0	12.3
265.085500	37.73	47.00	9.27	1000.0	120.000	161.0	V	177.0	14.1
742.513500	44.34	47.00	2.66	1000.0	120.000	111.0	н	127.0	23.0

 Report No.:
 SHEM190601386701

 Page:
 26 of 68

Mode b

Final Result

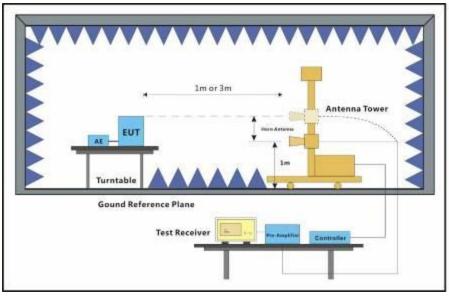
Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
30.984500	36.52	40.00	3.48	1000.0	120.000	107.0	۷	239.0	11.0
35.983500	37.01	40.00	2.99	1000.0	120.000	107.0	V	5.0	11.6
40.185000	36.21	40.00	3.79	1000.0	120.000	100.0	V	257.0	12.9
55.685500	35.85	40.00	4.15	1000.0	120.000	126.0	V	68.0	12.9
151.073000	36.29	40.00	3.71	1000.0	120.000	209.0	Н	171.0	8.7
932.941500	40.24	47.00	6.76	1000.0	120.000	125.0	V	101.0	25.4

Report No.: SHEM190601386701 Page: 27 of 68

6.4 Radiated Emissions (above 1GHz)

Test Requirement:	EN 55032:2015
Test Method:	EN 55032:2015
Frequency Range:	Above 1GHz
Measurement Distance:	3m
Limit:	
1GHz-3GHz	70 dB(μV/m) peak, 50 dB(μV/m) average
3GHz-6GHz	74 dB(μV/m) peak, 54dB(μV/m) average
Detector:	Peak for pre-scan (1000kHz resolution bandwidth) 1000M to 6000MHz

6.4.1 E.U.T. Operation


Operating Environment:

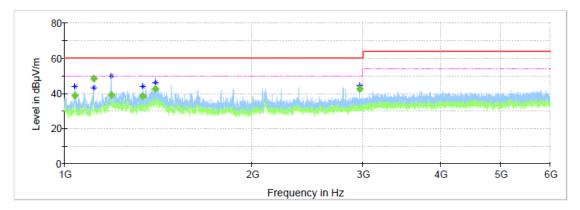
 Temperature:
 23 °C
 Humidity: 57 % RH
 Atmospheric Pressure: 1022 mbar

 Test mode
 a:Typical configuration: Keep EUT monitoring and data running continual, recording video during the test. Powered by power ADS-26FSG-12 12024EPG.
 b: Typical configuration: Keep EUT monitoring and data running continual, recording

b: Typical configuration: Keep EUT monitoring and data running continual, recording video during the test. Powered by power MSA-C2000IC12.0-24P-DE

6.4.2 Test Setup Diagram

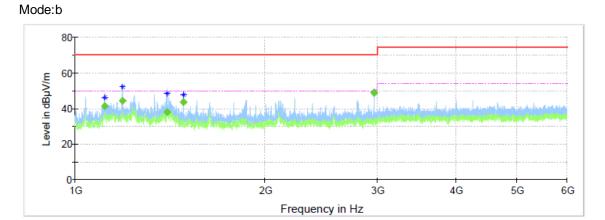
6.4.3 Measurement Data


An initial pre-scan was performed in the chamber using the spectrum analyser in peak detection mode. Quasi-peak measurements were conducted based on the peak sweep graph. The EUT was measured by BiConiLog antenna with 2 orthogonal polarities.

Notes : Emission Level=Read Level + Antenna Factor + Cable Loss - Preamp Factor

Report No.: SHEM190601386701 Page: 28 of 68

Mode:a;


Final Result

Frequency	MaxPeak	Average	Limit	Margin	Meas.	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	Time	(kHz)	(cm)		(deg)	(dB)
					(ms)					
1039.300000		38.63	50.00	11.37	1000.0	1000.000	107.0	Η	243.0	-18.9
1113.700000		48.43	50.00	1.57	1000.0	1000.000	157.0	V	135.0	-18.7
1188.200000		38.98	50.00	11.02	1000.0	1000.000	100.0	Η	350.0	-18.5
1336.700000		38.19	50.00	11.81	1000.0	1000.000	100.0	Н	155.0	-16.3
1398.200000		42.52	50.00	7.48	1000.0	1000.000	113.0	Η	139.0	-15.2
2970.200000		42.42	50.00	7.58	1000.0	1000.000	113.0	V	270.0	-10.6

 Report No.:
 SHEM190601386701

 Page:
 29 of 68

Final Result

Frequency	MaxPeak	Average	Limit	Margin	Meas.	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	Time	(kHz)	(cm)		(deg)	(dB)
					(ms)					
1113.800000		41.28	50.00	8.72	1000.0	1000.000	202.0	V	-1.0	-18.7
1188.200000		44.10	50.00	5.90	1000.0	1000.000	100.0	٧	159.0	-18.5
1397.800000		38.01	50.00	11.99	1000.0	1000.000	113.0	Η	139.0	-15.2
1485.200000		43.43	50.00	6.57	1000.0	1000.000	100.0	н	300.0	-15.8
2970.200000		48.58	50.00	1.42	1000.0	1000.000	131.0	V	8.0	-10.6
2970.400000		48.38	50.00	1.62	1000.0	1000.000	131.0	٧	8.0	-10.6

Report No.: SHEM190601386701 Page: 30 of 68

6.5 Harmonic Current Emission

Test Requirement:	EN 61000-3-2:2014
Test Method:	EN 61000-3-2:2014
Frequency Range:	100Hz to 2kHz

6.5.1 Measurement Data

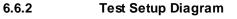
There is no need for Harmonics test to be performed on this product (rated power is less than 75W) in accordance with EN 61000-3-2:2014.

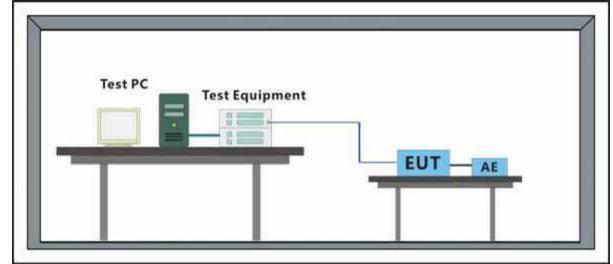
For further details, please refer to Clause 7 of EN 61000-3-2 which states:

"For the following categories of equipment, limits are not specified in this standard. - equipment with a rated power of 75W or less, other than lighting equipment."

Report No.: SHEM190601386701 Page: 31 of 68

6.6 Voltage Fluctuations and Flicker


Test Requirement:	EN 61000-3-3:2013
Test Method:	EN 61000-3-3:2013


6.6.1 E.U.T. Operation

Operating Environment:

Temperature:23 °CHumidity:55 % RHAtmospheric Pressure:1019mbarTest mode:a:Typical configuration:Keep EUT monitoring and data running continual, recording
video during the test.Powered by power ADS-26FSG-12 12024EPG.

b: Typical configuration: Keep EUT monitoring and data running continual, recording video during the test. Powered by power MSA-C2000IC12.0-24P-DE

Mode:a

Moue.a				
Parameter values recorded during	the test:			
Vrms at the end of test (Volt):	229.76			
Highest dt (%):	0.00	Test limit (%):	N/A	N/A
T-max (mS):	0	Test limit (mS):	500.0	Pass
Highest dc (%):	0.00	Test limit (%):	3.30	Pass
Highest dmax (%):	-0.03	Test limit (%):	4.00	Pass
Highest Pst (10 min. period):	0.261	Test limit:	1.000	Pass
Highest Plt (2 hr. period):	0.114	Test limit:	0.650	Pass
Mode b				
Parameter values recorded during	the test:			
Vrms at the end of test (Volt):	229.78			
Highest dt (%):	0.00	Test limit (%):	N/A	N/A
T-max (mS):	0	Test limit (mS):	500.0	Pass
Highest dc (%):	0.00	Test limit (%):	3.30	Pass
Highest dmax (%):	-0.04	Test limit (%):	4.00	Pass
Highest Pst (10 min. period):	0.271	Test limit:	1.000	Pass
Highest Plt (2 hr. period):	0.119	Test limit:	0.650	Pass

NO.588 West Jindu Road, Songjiang District, Shanghal, China 201612 中国・上海・松江区会都西路588号 邮编: 201612

1(86-21)61915666 1(86-21)61915678 www.sgsgroup.com.cn 1(86-21)61915666 1(86-21)61915678 e sgs.china@sgs.com

Member of the SGS Group (SGS SA)

Report No.: SHEM190601386701 Page: 32 of 68

NO.588 West Jindu Road, Songjiang District, Shanghai, China 201612 中国・上海・松江区全都西路588号 邮编: 201612

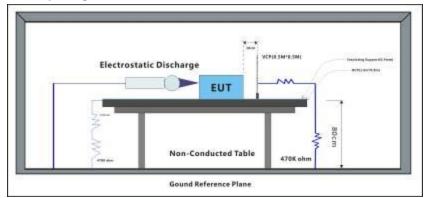
Report No.: SHEM190601386701 Page: 33 of 68

7 Immunity Test Results

7.1 Performance Criteria Description in EN 50130-4:2011 +A1:2014

There shall be no damage, malfunction or change of status due to the conditioning. Flickering of an indicator during the application of the discharges is permissible, providing that there is no residual change in the EUT or any change in outputs, which could be interpreted by associated equipment as a change.

For further details, please refer to Clause 7.4, 8.4, 9.4, 10.4, 11.4, 12.4 and 13.4, of EN 50130-4.



Report No.: SHEM190601386701 Page: 34 of 68

7.2 Electrostatic Discharge

Test Requirement:	EN 50130-4:2011 +A1:2014
Test Method:	EN 61000-4-2:2009
Number of Discharge:	Minimum 10 times at each test point for Air Discharge
	Minimum 50 times at each test point for Contact or VCP & HCP Discharge
Discharge Mode:	Single Discharge
Discharge Period:	1 second minimum

7.2.1 **Test Setup Diagram**

7.2.2 E.U.T. Operation

Operating Environment:

Temperature: 19.8 °C 58 % RH Atmospheric Pressure: 1022.2 mbar Humidity: Test mode: a:Typical configuration: Keep EUT monitoring and data running continual, recording video during the test. Powered by power ADS-26FSG-12 12024EPG.

> b: Typical configuration: Keep EUT monitoring and data running continual, recording video during the test. Powered by power MSA-C2000IC12.0-24P-DE

7.2.3 **Test Results:**

Observations: Test Point:

- All insulated enclosure and seams. 1.
- 2. All accessible metal parts of the enclosure.

3	B. All side			
Discharge type	Level (kV)	Polarity	Test Point	Result / Observations
Air Discharge	2,4,8	+	1	Pass
Air Discharge	2,4,8	-	1	Pass
Contact Discharge	6	+	2	Pass
Contact Discharge	6	-	2	Pass
Horizontal Coupling	6	+	3	Pass
Horizontal Coupling	6	-	3	Pass
Vertical Coupling	6	+	3	Pass
Vertical Coupling	6	_	3	Pass

Results:

1. The EUT working normal, before the conditioning.

2. Monitor the EUT during the conditioning period there was no status change has occurred, during the conditioning.

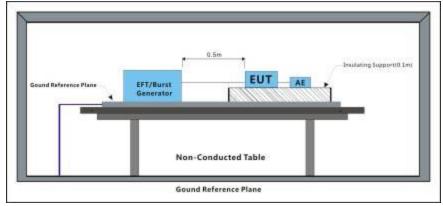
NO.588 West Jindu Road, Songjiang District, Shanghai, Chini	a 201612	
中国・上海・松江区金都西路588号 部编	: 201612	

1(85-21) 61915666 1(86-21) 61915678 www.sgsgroup.com.cn 1/86-21) 61915666 1/86-21 /61915678 e sgs.china@sgs.com

Report No.: SHEM190601386701 Page: 35 of 68

3. No degradation in the performance of the EUT was observed, after the conditioning.

NO.588 West Jindu Road, Songjiang District, Shanghai, China 201612 中国・上海 ・松江区全都西路588号 邮编: 201612


 Report No.:
 SHEM190601386701

 Page:
 36 of 68

7.3 Electrical Fast Transients/Burst at Power Port

Test Requirement:	EN 50130-4:2011 +A1:2014
Test Method:	EN 61000-4-4:2012
Repetition Frequency:	100kHz
Burst Period:	300ms
Test Duration:	1 minute per level & polarity

7.3.1 Test Setup Diagram

7.3.2 E.U.T. Operation

Operating Environment:

Temperature:24 °CHumidity:58 % RHAtmospheric Pressure:1022.2 mbarTest mode:a:Typical configuration: Keep EUT monitoring and data running continual, recording
video during the test. Powered by power ADS-26FSG-12 12024EPG.

b: Typical configuration: Keep EUT monitoring and data running continual, recording video during the test. Powered by power MSA-C2000IC12.0-24P-DE

7.3.3 Test Results:

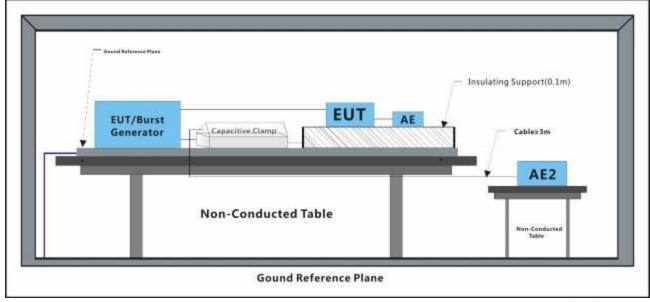
Test Line	Level (kV)	Polarity	CDN/Clamp	Result / Observations
AC power port	2	+	CDN	Pass
AC power port	2	-	CDN	Pass

Results:

1. The EUT working normal, before the conditioning.

2. Monitor the EUT during the conditioning period there was no status change has occurred, during the conditioning.

3. No degradation in the performance of the EUT was observed, after the conditioning.


 Report No.:
 SHEM190601386701

 Page:
 37 of 68

7.4 Electrical Fast Transients/Burst at Signal Port

Test Requirement:	EN 50130-4:2011 +A1:2014
Test Method:	EN 61000-4-4:2012
Repetition Frequency:	100kHz
Burst Period:	300ms
Test Duration:	1 minute per level & polarity

7.4.1 Test Setup Diagram

7.4.2 E.U.T. Operation

Operating Environment:

Temperature:24 °CHumidity:58 % RHAtmospheric Pressure:1022.2 mbarTest mode:a:Typical configuration: Keep EUT monitoring and data running continual, recording
video during the test. Powered by power ADS-26FSG-12 12024EPG.

b: Typical configuration: Keep EUT monitoring and data running continual, recording video during the test. Powered by power MSA-C2000IC12.0-24P-DE

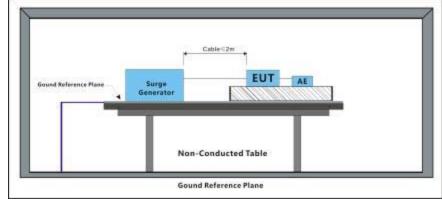
7.4.3 Test Results:

Port	Level (kV)	Polarity	CDN/Clamp	Result / Observations
Signal port	1	+	Clamp	Pass
Signal port	1	-	Clamp	Pass

Results:

1. The EUT working normal, before the conditioning.

2. Monitor the EUT during the conditioning period there was no status change has occurred, during the conditioning.


3. No degradation in the performance of the EUT was observed, after the conditioning.

 Report No.:
 SHEM190601386701

 Page:
 38 of 68

7.5 Surge at Power Port Test Requirement: EN 50130-4:2011 +A1:2014 Test Method: EN 61000-4-5:2014 Interval: 60s between each surge No. of surges: 5 positive, 5 negative Test Setup Diagram

7.5.2 E.U.T. Operation

Operating Environment:

Temperature:23 °CHumidity:56 % RHAtmospheric Pressure:1022.2 mbarTest mode:a:Typical configuration: Keep EUT monitoring and data running continual, recording
video during the test. Powered by power ADS-26FSG-12 12024EPG.b: Typical configuration: Keep EUT monitoring and data running continual, recording

b: Typical configuration: Keep EUT monitoring and data running continual, recording video during the test. Powered by power MSA-C2000IC12.0-24P-DE

uits:			
Level (kV)	Polarity	Phase (deg)	Result / Observations
0.5,1	+	0°	Pass
0.5,1	-	0°	Pass
0.5,1	+	90°	Pass
0.5,1	-	90°	Pass
0.5,1	+	180°	Pass
0.5,1	-	180°	Pass
0.5,1	+	270°	Pass
0.5,1	-	270°	Pass
0.5,1,2	+	0°	Pass
0.5,1,2	-	0°	Pass
0.5,1,2	+	90°	Pass
0.5,1,2	-	90°	Pass
0.5,1,2	+	180°	Pass
0.5,1,2	-	180°	Pass
0.5,1,2	+	270°	Pass
0.5,1,2	_	270°	Pass
	Level (kV) 0.5,1 0.5,1 0.5,1 0.5,1 0.5,1 0.5,1 0.5,1 0.5,1 0.5,1 0.5,1 0.5,1,2 0,	Level (kV)Polarity $0.5,1$ + $0.5,1$ - $0.5,1$ + $0.5,1$ + $0.5,1$ - $0.5,1$ + $0.5,1$ + $0.5,1$ + $0.5,1$ + $0.5,1$ + $0.5,1,2$ + $0.5,1,2$ + $0.5,1,2$ + $0.5,1,2$ + $0.5,1,2$ + $0.5,1,2$ + $0.5,1,2$ + $0.5,1,2$ + $0.5,1,2$ + $0.5,1,2$ + $0.5,1,2$ + $0.5,1,2$ + $0.5,1,2$ +	Level (kV)PolarityPhase (deg) $0.5,1$ + 0° $0.5,1$ - 0° $0.5,1$ + 90° $0.5,1$ + 90° $0.5,1$ + 180° $0.5,1$ + 180° $0.5,1$ + 270° $0.5,1$ + 270° $0.5,1$ - 0° $0.5,1,2$ + 0° $0.5,1,2$ + 90° $0.5,1,2$ + 90° $0.5,1,2$ + 180° $0.5,1,2$ + 180° $0.5,1,2$ + 180° $0.5,1,2$ + 180° $0.5,1,2$ + 270°

7.5.3 Test Results:

NO.588 West Jindu Road, Songjiang District, Shanghal, China 201612 中国・上海・松江区全都西路588号 邮编: 201612 1(86-21) 61915666 1(86-21) 61915678 www.agsgroup.com.cn 1(86-21) 61915666 1(86-21) 61915678 e sgs.china@sgs.com

Report No.: SHEM190601386701 Page: 39 of 68

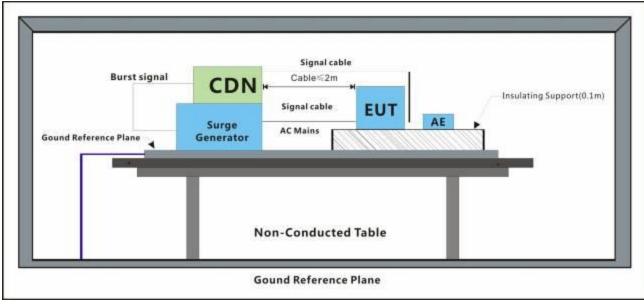
			[
N-PE	0.5,1,2	+	0°	Pass
N-PE	0.5,1,2	-	0°	Pass
N-PE	0.5,1,2	+	90°	Pass
N-PE	0.5,1,2	-	90°	Pass
N-PE	0.5,1,2	+	180°	Pass
N-PE	0.5,1,2	-	180°	Pass
N-PE	0.5,1,2	+	270°	Pass
N-PE	0.5,1,2	-	270°	Pass

Results:

1. The EUT working normal, before the conditioning.

2. Monitor the EUT during the conditioning period there was no status change has occurred, during the conditioning.

3. No degradation in the performance of the EUT was observed, after the conditioning.


Report No.: SHEM190601386701 Page: 40 of 68

7.6 Surge at Signal Port

 Test Requirement:
 EN 50130-4:2011 + A1:2014

 Test Method:
 EN 61000-4-5:2014

7.6.1 Test Setup Diagram

7.6.2 E.U.T. Operation

Operating Environment:

Temperature:23 °CHumidity:56 % RHAtmospheric Pressure:1022.2 mbarTest mode:a:Typical configuration: Keep EUT monitoring and data running continual, recording
video during the test. Powered by power ADS-26FSG-12 12024EPG.

b: Typical configuration: Keep EUT monitoring and data running continual, recording video during the test. Powered by power MSA-C2000IC12.0-24P-DE

7.6.3 Test Results:

Port	Line	Level (kV)	Polarity	Result / Observations
Signal port	Line-Ground	0.5	+	Pass
Signal port	Line-Ground	0.5	-	Pass
Signal port	Line-Ground	1	+	Pass
Signal port	Line-Ground	1	-	Pass

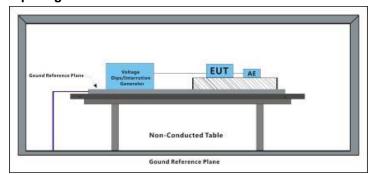
Results:

1. The EUT working normal, before the conditioning.

2. Monitor the EUT during the conditioning period there was no status change has occurred, during the conditioning.

3. No degradation in the performance of the EUT was observed, after the conditioning.

Report No.: SHEM190601386701 Page: 41 of 68


7.7 Voltage Dips and Interruptions

Test Requirement:	EN 50130-4:2011 +A1:2014
Test Method:	EN 61000-4-11:2004
Performance Criterion:	0% of UT (Supply Voltage) for 250 Periods; 40% of UT for 10 Periods; 70% of UT for 25 Periods; 80% of UT for 250 Periods;
No. of Dins / Interruptions:	3 per level

No. of Dips / Interruptions: Time between dropout

3 per Level 10s

7.7.1 Test Setup Diagram

7.7.2 E.U.T. Operation

Operating Environment:

Temperature:24 °CHumidity:58 % RHAtmospheric Pressure:1012.5 mbarTest mode:a:Typical configuration: Keep EUT monitoring and data running continual, recording
video during the test. Powered by power ADS-26FSG-12 12024EPG.b:Tupical configuration: Keep EUT monitoring and data running continual, recording

b: Typical configuration: Keep EUT monitoring and data running continual, recording video during the test. Powered by power MSA-C2000IC12.0-24P-DE

11110 10011000				
Level % UT	Phase (deg)	Duration	No. of Dips / Interruptions	Result / Observations
80	0°	250 Cycles	3	Pass
80	180°	250 Cycles	3	Pass
70	0°	25 Cycles	3	Pass
70	180°	25 Cycles	3	Pass
40	0°	10 Cycles	3	Pass
40	180°	10 Cycles	3	Pass
0	0°	250 Cycles	3	Pass
0	180°	250 Cycles	3	Pass

7.7.3 Test Results:

Results:

1. The EUT working normal, before the conditioning.

2. Monitor the EUT during the conditioning period :

80%UT Lasts for 250 cycles: During the test, No degradation in the performance of the EUT was observed 70%UT Lasts for 25 cycles: During the test, No degradation in the performance of the EUT was observed 40%UT Lasts for 10 cycles: During the test, No degradation in the performance of the EUT was observed 0%UT Lasts for 250 cycles: During the test , the Sample restart, after the test , all the functions recovery automatically

NO.588 West Jindu Road, Songjiang District, Shanghai, China	201612
中国・上海・松江区金都西路588号 邮编:	201612

1(86-21)61915666 1(86-21)61915676 www.sgsgroup.com.cn 1(86-21)61915666 1(86-21)61915676 e sgs.china@sgs.com

Report No.: SHEM190601386701 Page: 42 of 68

3. No degradation in the performance of the EUT was observed, after the conditioning.

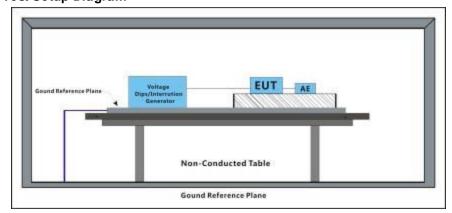
NO.588 West Jindu Road, Songjiang District, Shanghai, China 201612 中国・上海・松江区全都西路588号 邮编: 201612

Report No.: SHEM190601386701 Page: 43 of 68

7.8 Mains Supply Voltage Variations-Conditioning

 Test Requirement:
 EN 50130-4:2011 +A1:2014

 Test Method:
 EN 50130-4:2011+A1:2014


 Voltage max.:
 AC 264V (Umax: Unom + 10%)

 Voltage min.:
 AC 85V (Umin: Unom - 15%)

 Unom Voltage:
 AC 230V

 Test Setup Diagram

7.8.1

7.8.2 E.U.T. Operation

Operating Environment:

Temperature:25 °CHumidity:58 % RHAtmospheric Pressure:1012.5 mbarTest mode:a:Typical configuration: Keep EUT monitoring and data running continual, recording
video during the test. Powered by power ADS-26FSG-12 12024EPG.

b: Typical configuration: Keep EUT monitoring and data running continual, recording video during the test. Powered by power MSA-C2000IC12.0-24P-DE

7.8.3 Test Results: Pass

Test phenomenon description for the EUT:

1. The EUT working normal, before the conditioning.

2. Monitor the EUT during the conditioning period and detected no any changes in states, during the conditioning.

3. No degradation in the performance of the EUT was observed, after the conditioning.

Report No.: SHEM190601386701 Page: 44 of 68

7.9 Radiated Immunity(80MHz-2.7GHz) Test Requirement: EN 50130-4:2011 +A1:2014 Test Method: EN 61000-4-3:2006 +A1:2008+A2:2010 Modulation: 80%, 1 kHz Amplitude Modulation & 0.5s ON 0.5s OFF Pulse Modulation 7.9.1 **Test Setup Diagram** Camera 3m Antenna Tower AE EUT 155cm Blocm

Gound Reference Plane

7.9.2 E.U.T. Operation

Operating Environment:

Temperature: 21.3 °C Humidity: 49 % RH Atmospheric Pressure: 1020.2 mbar Test mode: a:Typical configuration: Keep EUT monitoring and data running continual, recording video during the test. Powered by power ADS-26FSG-12 12024EPG.

Menter

b: Typical configuration: Keep EUT monitoring and data running continual, recording video during the test. Powered by power MSA-C2000IC12.0-24P-DE

Signal Generato

(II. (II. (INFINIT

Frequency	Level (V/m)	EUT Face	Dwell time	Result / Observations
80MHz-2.7GHz	10	Front/ Back/ Left/ Right/ Top/ Underside	3s	Pass
80MHz-2.7GHz	3	Front/ Back/ Left/ Right/ Top/ Underside	3s	Pass
80MHz-2.7GHz	1	Front/ Back/ Left/ Right/ Top/ Underside	3s	Pass

Results:

1. The EUT working normal, before the conditioning.

2. Monitor the EUT during the conditioning period:

10V/M: During the test, No degradation in the performance of the EUT was observed

3V/M: During the test, No degradation in the performance of the EUT was observed

1V/M: During the test, No degradation in the performance of the EUT was observed

3.No degradation in the performance of the EUT was observed, after the conditioning.

NO.588 West Jindu Road, Songjiang District, Shanghai, Chin	a 201612
中国・上海・松江区金都西路588号 部编	: 201612

1(86-21) 61915666 1(86-21) 61915678 www.sgsgroup.com.cn 1/86-21) 61915666 1/86-21 /61915678 e sgs.china@sgs.com

Report No.: SHEM190601386701 Page: 45 of 68

7.10 Conducted Immunity at Power Port (150kHz-100MHz) EN 50130-4:2011 +A1:2014 Test Requirement: Test Method: EN 61000-4-6:2014 Modulation: 80%, 1 kHz Amplitude Modulation & 0.5s ON 0.5s OFF Pulse Modulation 7.10.1 **Test Setup Diagram Power Attenuator** 12+0.3m 0.1m<L<0.3m EUT AE1 AE2 CDN CDN2 0.1m Supports **Gound Reference Plane** Signal e. Power . II DECK Amplifier

7.10.2 E.U.T. Operation

Operating Environment:

Temperature:21.4 °CHumidity:47 % RHAtmospheric Pressure:1021.2 mbarTest mode:a:Typical configuration: Keep EUT monitoring and data running continual, recording
video during the test. Powered by power ADS-26FSG-12 12024EPG.

b: Typical configuration: Keep EUT monitoring and data running continual, recording video during the test. Powered by power MSA-C2000IC12.0-24P-DE

7.10.3 Test Resul	ts:			
Cable port	Level (Vrms)	CDN/Clamp	Dwell time	Result / Observations
AC power port	10	CDN	3s	Pass
AC power port	3	CDN	3s	Pass
AC power port	1	CDN	3s	Pass

Results:

1. The EUT working normal, before the conditioning.

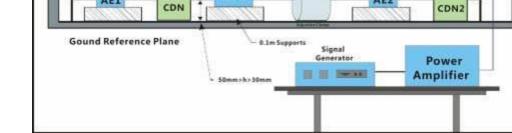
2. Monitor the EUT during the conditioning period:

10V:During the test, no degradation in the performance of the EUT was observed.

3V:During the test, no degradation in the performance of the EUT was observed.

1V:During the test, no degradation in the performance of the EUT was observed.

3.No degradation in the performance of the EUT was observed, after the conditioning.


1	NO.588 West Jindu Road, Songjiang District, Shanghai,	China	201612
	中国・上海・松江区金都西路588号	邮编:	201612

1(86-21)61915666 1(86-21)61915678 www.sgsgroup.com.cn 1(86-21)61915666 1(86-21)61915678 e.sgs.china@sgs.com

> Report No.: SHEM190601386701 Page: 46 of 68

7.11 Conducted Immunity at Signal Port (150kHz-100MHz) Test Requirement: EN 50130-4:2011 +A1:2014 Test Method: EN 61000-4-6:2014 Modulation: 80%, 1 kHz Amplitude Modulation & 0.5s ON 0.5s OFF Pulse Modulation 7.11.1 **Test Setup Diagram** Power Attenuator 0.1m <L < 0.3m -+ EUT AE2 AE1 CDN CDN2

7.11.2 E.U.T. Operation

Operating Environment:

Temperature: 21.4 °C 47 % RH Atmospheric Pressure: 1021.2 mbar Humidity: Test mode: a:Typical configuration: Keep EUT monitoring and data running continual, recording video during the test. Powered by power ADS-26FSG-12 12024EPG.

> b: Typical configuration: Keep EUT monitoring and data running continual, recording video during the test. Powered by power MSA-C2000IC12.0-24P-DE

7.11.3 Test Results:					
Port	Level (Vrms)	CDN/Clamp	Dwell time	Result / Observations	
Signal port	10	Clamp	3s	Pass ¹⁾	
Signal port	3	Clamp	3s	Pass ²⁾	
Signal port	1	Clamp	3s	Pass*	

Report No.: SHEM190601386701 Page: 47 of 68

Results:

1. The EUT working normal, before the conditioning.

2. Monitor the EUT during the conditioning period:

TVI Video in:

10V:Water ripples was observed on the TVI preview in the frequency band of and 1M~15MHz. Color stripe was observed on the TVI preview in the frequency band of 40M~54MHz.

3V:Slight Water ripples was observed on the TVI preview in the frequency band of and 1M~25MHz. Slight color stripe was observed on the TVI preview in the frequency band of 45M~60MHz.

1V:During the test, no degradation in the performance of the EUT was observed.

CVBS Video out:

10V:Water ripples was observed on the TVI preview in the frequency band of and 5M~35MHz. Color stripe was observed on the TVI preview in the frequency band of 39M~54MHz.

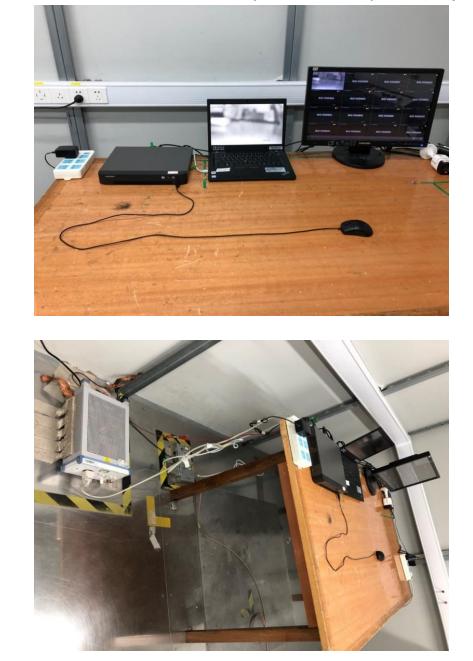
3V:Slight Water ripples was observed on the TVI preview in the frequency band of and 5M~40MHz. Slight color stripe was observed on the TVI preview in the frequency band of 39M~47MHz.

1V:During the test, no degradation in the performance of the EUT was observed.

3.No degradation in the performance of the EUT was observed, after the conditioning.

Report No.: SHEM190601386701 Page: 48 of 68

8 Photographs


8.1 Conducted Emissions at Mains Terminals (150kHz-30MHz) Test Setup

Report No.: SHEM190601386701 Page: 49 of 68

8.2 Asymmetric Mode Conducted Emissions (150kHz-30MHz) Test Setup

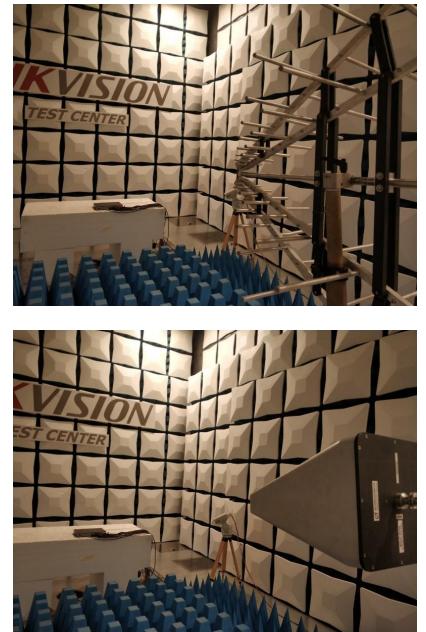
Report No.: SHEM190601386701 Page: 50 of 68

8.3 Radiated Emissions (30MHz-1GHz) Test Setup

8.4 Radiated Emissions (above 1GHz) Test Setup

Report No.: SHEM190601386701 Page: 51 of 68

8.5 Voltage Fluctuations and Flicker Test Setup


8.6 Electrostatic Discharge Test Setup

Report No.: SHEM190601386701 Page: 52 of 68

8.7 Radiated Immunity (80MHz-2.7GHz) Test Setup

Report No.: SHEM190601386701 Page: 53 of 68

8.8 Electrical Fast Transients/Burst at Power Port Test Setup

8.9 Electrical Fast Transients/Burst at Signal Port Test Setup

Report No.: SHEM190601386701 Page: 54 of 68

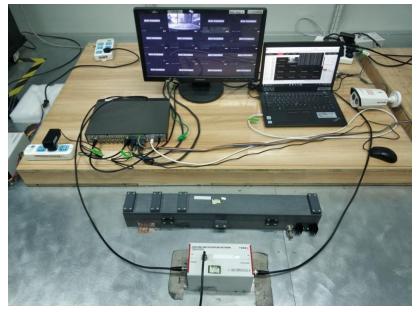
8.10 Surge at Power Port Test Setup

Report No.: SHEM190601386701 Page: 55 of 68

8.11 Surge at Signal Port Test Setup

Report No.: SHEM190601386701 Page: 56 of 68





Report No.: SHEM190601386701 Page: 57 of 68

8.12 Conducted Immunity at Power Port (150kHz-100MHz) Test Setup

8.13 Conducted Immunity at Signal Port (150kHz-100MHz) Test Setup

Report No.: SHEM190601386701 Page: 58 of 68

8.14 Voltage Dips and Interruptions Test Setup

8.15 Mains Supply Voltage Variations-Conditioning Test Setup

Report No.: SHEM190601386701 Page: 59 of 68

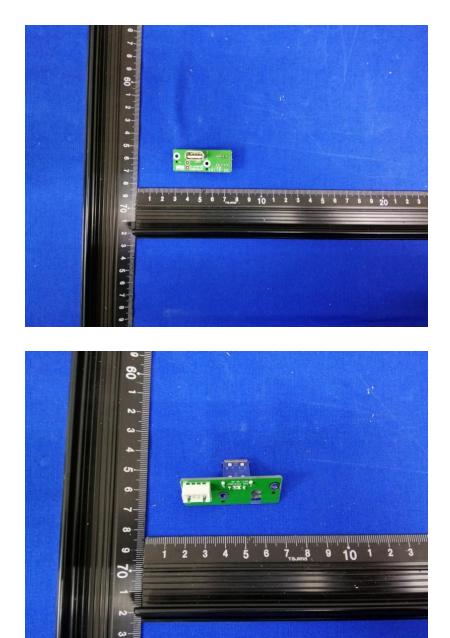
8.16 EUT Constructional Details (EUT Photos)

Report No.: SHEM190601386701 Page: 60 of 68

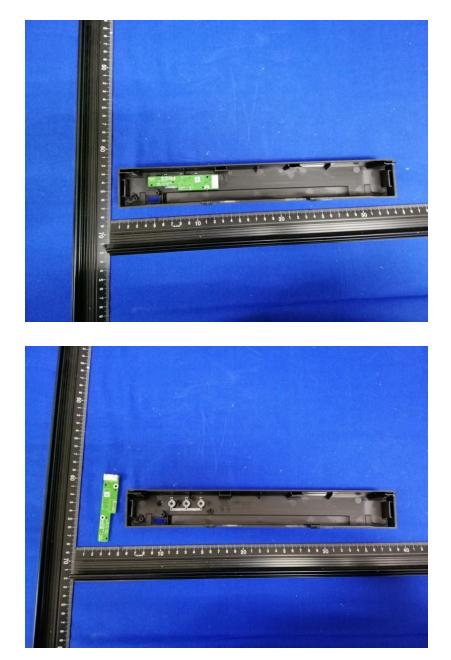
Report No.: SHEM190601386701 Page: 61 of 68

NO.588 West Jindu Road, Songjiang District, Shanghai, China 201612 中国・上海・松江区全都西路588号 邮编: 201612

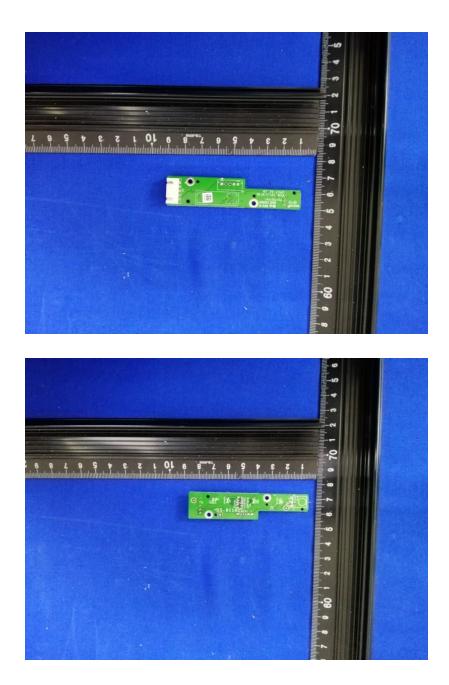
Report No.: SHEM190601386701 Page: 62 of 68


Report No.: SHEM190601386701 Page: 63 of 68

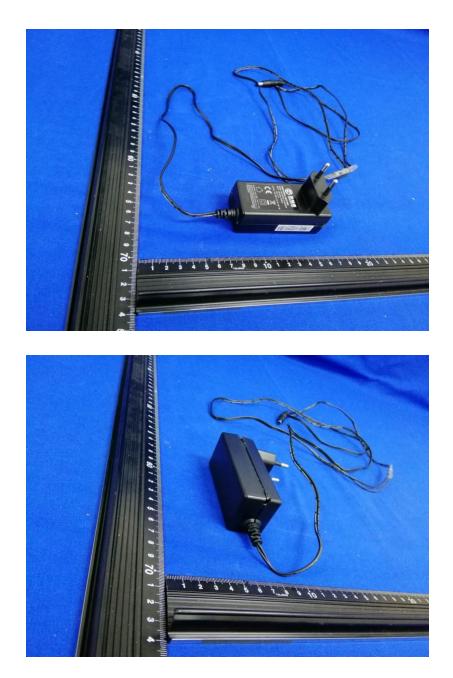
9 70



Report No.: SHEM190601386701 Page: 64 of 68



Report No.: SHEM190601386701 Page: 65 of 68



Report No.: SHEM190601386701 Page: 66 of 68



Report No.: SHEM190601386701 Page: 67 of 68

Report No.: SHEM190601386701 Page: 68 of 68

--End of the Report--